Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Cell Death Dis ; 15(4): 267, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622131

RESUMO

Isochlorate dehydrogenase 1 (IDH1) is an important metabolic enzyme for the production of α-ketoglutarate (α-KG), which has antitumor effects and is considered to have potential antitumor effects. The activation of IDH1 as a pathway for the development of anticancer drugs has not been attempted. We demonstrated that IDH1 can limit glycolysis in hepatocellular carcinoma (HCC) cells to activate the tumor immune microenvironment. In addition, through proteomic microarray analysis, we identified a natural small molecule, scutellarin (Scu), which activates IDH1 and inhibits the growth of HCC cells. By selectively modifying Cys297, Scu promotes IDH1 active dimer formation and increases α-KG production, leading to ubiquitination and degradation of HIF1a. The loss of HIF1a further leads to the inhibition of glycolysis in HCC cells. The activation of IDH1 by Scu can significantly increase the level of α-KG in tumor tissue, downregulate the HIF1a signaling pathway, and activate the tumor immune microenvironment in vivo. This study demonstrated the inhibitory effect of IDH1-α-KG-HIF1a on the growth of HCC cells and evaluated the inhibitory effect of Scu, the first IDH1 small molecule agonist, which provides a reference for cancer immunotherapy involving activated IDH1.


Assuntos
Carcinoma Hepatocelular , Glucuronatos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteômica , Apigenina/farmacologia , Apigenina/uso terapêutico , Ácidos Cetoglutáricos/metabolismo , Microambiente Tumoral , Isocitrato Desidrogenase
2.
Sci Rep ; 14(1): 5754, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459102

RESUMO

The present study aimed to explore the potential ameliorative effect of apigenin (APG) against diabetes-associated genitourinary complications in rats. A diabetic rat model was induced by the intraperitoneal injection of streptozotocin (STZ). All experimental animals were treated with vehicle or vehicle plus APG at a dose of 0.78 mg/kg/day for 10 days, either once diabetes was confirmed or at the end of the 3rd week after confirmation of diabetes. Rats were sacrificed at the end of the fifth week. In addition to the histological assessment, an analysis of kidney function tests and serum testosterone was performed to assess diabetic genitourinary complications. Gene expression of the mitochondrial fission protein, dynamin related protein 1 (Drp1), was measured in renal and testicular tissues using qRT PCR. APG can increase body weight, reduce blood glucose levels, and improve renal and testicular functions in diabetic rats. APG decreased Drp1 overexpression in diabetic animals' kidneys and testes. In summary, our current work discloses that APG attenuates diabetic genitourinary lesions in rats via suppressing Drp1 overexpression.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Ratos , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Rim/metabolismo , Dinaminas/metabolismo , Nefropatias Diabéticas/patologia
3.
Am J Chin Med ; 52(2): 471-492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38480499

RESUMO

The stimulator of interferon genes (STING) signaling pathway is crucial for the pathogenesis of autoimmune and inflammatory disorders, including acute lung injury (ALI). Apigenin (4[Formula: see text],5,7-trihydroxyflavone) is a natural flavonoid widely found in fruits, vegetables, and Chinese medicinal herbs that exhibits a range of pharmacological effects, such as antibacterial and anti-inflammatory activities. However, the efficacy of apigenin in STING pathway-mediated diseases remains unclear. Accordingly, this study screened Chinese medicines to identify potent agents that reduced the synthesis of type I interferons (IFNs). The results revealed apigenin as a potent compound with low cytotoxicity that markedly reduced the synthesis of type I IFNs in response to STING pathway agonists. Besides, apigenin markedly suppressed innate immune responses triggered by the STING agonist SR-717. Mechanistically, apigenin downregulated IFN beta 1 (IFNB1) expression mediated by the STING pathway via dose-dependent inhibition of STING expression, reduction of dimerization, nuclear translocation of phosphorylated IRF3, and disruption of the association between STING and IRF3. Moreover, apigenin effectively mitigated pathological pulmonary inflammation and lung edema in lipopolysaccharide (LPS)-induced ALI in mice. Apigenin further strongly attenuated the hallmarks of immoderate inflammation (interleukin (IL)-6, IL-1[Formula: see text], and tumor necrosis factor [Formula: see text]) and innate immune responses (IFNB1, C-X-C motif chemokine ligand 10, and IFN-stimulated gene 15) by preventing the activation of the STING/IRF3 pathway both in vitro and in vivo. Importantly, SR-717 significantly reversed the inhibitory effects of apigenin in LPS-induced THP1-BlueTM ISG macrophages. Collectively, apigenin effectively alleviated innate immune responses and mitigated inflammation in LPS-induced ALI via inhibition of the STING/IRF3 pathway. These findings suggest the potential of apigenin as a prophylactic and therapeutic candidate for managing STING-mediated diseases.


Assuntos
Apigenina , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Apigenina/farmacologia , Apigenina/uso terapêutico , Proteínas de Membrana/metabolismo , Imunidade Inata , Inflamação/tratamento farmacológico , Interleucina-6
4.
Int J Biol Sci ; 20(5): 1563-1577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481798

RESUMO

Fetuin-A, a hepatokine secreted by hepatocytes, binds to insulin receptors and consequently impairs the activation of the insulin signaling pathway, leading to insulin resistance. Apigenin, a flavonoid isolated from plants, has beneficial effects on insulin resistance; however, its regulatory mechanisms are not fully understood. In the present study, we investigated the molecular mechanisms underlying the protective effects of apigenin on insulin resistance. In Huh7 cells, treatment with apigenin decreased the mRNA expression of fetuin-A by decreasing reactive oxygen species-mediated casein kinase 2α (CK2α)-nuclear factor kappa-light-chain-enhancer of activated B activation; besides, apigenin decreased the levels of CK2α-dependent fetuin-A phosphorylation and thus promoted fetuin-A degradation through the autophagic pathway, resulting in a decrease in the protein levels of fetuin-A. Moreover, apigenin prevented the formation of the fetuin-A-insulin receptor (IR) complex and thereby rescued the PA-induced impairment of the insulin signaling pathway, as evidenced by increased phosphorylation of IR substrate-1 and Akt, and translocation of glucose transporter 2 from the cytosol to the plasma membrane. Similar results were observed in the liver of HFD-fed mice treated with apigenin. Collectively, our findings revealed that apigenin ameliorates obesity-induced insulin resistance in the liver by targeting fetuin-A.


Assuntos
Resistência à Insulina , Camundongos , Animais , alfa-2-Glicoproteína-HS/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , alfa-Fetoproteínas/metabolismo
5.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38516760

RESUMO

Pirarubicin (THP) is one of the most commonly used antineoplastic drugs in clinical practice. However, its clinical application is limited due to its toxic and heart­related side effects. It has been reported that oxidative stress, inflammation and apoptosis are closely associated with cardiotoxicity caused by pirarubicin (CTP). Additionally, it has also been reported that scutellarein (Sc) exerts anti­inflammatory, antioxidant, cardio­cerebral vascular protective and anti­apoptotic properties. Therefore, the present study aimed to investigate the effect of food therapy with Sc on CTP and its underlying molecular mechanism using echocardiography, immunofluorescence, western blot, ROS staining, and TUNEL staining. The in vivo results demonstrated that THP was associated with cardiotoxicity. Additionally, abnormal changes in the expression of indicators associated with oxidative stress, ferroptosis and apoptosis were observed, which were restored by Sc. Therefore, it was hypothesized that CTP could be associated with oxidative stress, ferroptosis and apoptosis. Furthermore, the in vitro experiments showed that Sc and the NADPH oxidase 2 (NOX2) inhibitor, GSK2795039 (GSK), upregulated glutathione peroxidase 4 (GPX4) and inhibited THP­induced oxidative stress, apoptosis and ferroptosis. However, cell treatment with the ferroptosis inhibitor, ferrostatin­1, or inducer, erastin, could not significantly reduce or promote, respectively, the expression of NOX2. However, GSK significantly affected ferroptosis and GPX4 expression. Overall, the results of the present study indicated that food therapy with Sc ameliorated CTP via inhibition of apoptosis and ferroptosis through regulation of NOX2­induced oxidative stress, thus suggesting that Sc may be a potential therapeutic drug against CTP.


Assuntos
Aminopiridinas , Apigenina , Cardiotoxicidade , Doxorrubicina , Ferroptose , Sulfonamidas , Animais , Ratos , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidade , Ferroptose/efeitos dos fármacos , NADPH Oxidase 2/efeitos dos fármacos , NADPH Oxidase 2/genética , Estresse Oxidativo/efeitos dos fármacos
6.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542210

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon, with symptomatology influenced by factors including environmental, genomic, microbial, and immunological interactions. Gut microbiota dysbiosis, characterized by bacterial population alterations, contributes to intestinal homeostasis disruption and aberrant immune system activation, thereby exacerbating the inflammatory state. This study assesses the therapeutic efficacy of intraperitoneal (IP) injected flavonoids (apigenin, luteolin, and xanthohumol) in the reduction of inflammatory parameters and the modulation of the gut microbiota in a murine model of ulcerative colitis. Flavonoids interact with gut microbiota by modulating their composition and serving as substrates for the fermentation into other anti-inflammatory bioactive compounds. Our results demonstrate the effectiveness of luteolin and xanthohumol treatment in enhancing the relative abundance of anti-inflammatory microorganisms, thereby attenuating pro-inflammatory species. Moreover, all three flavonoids exhibit efficacy in the reduction of pro-inflammatory cytokine levels, with luteolin strongly demonstrating utility in alleviating associated physical UC symptoms. This suggests that this molecule is a potential alternative or co-therapy to conventional pharmacological interventions, potentially mitigating their adverse effects. A limited impact on microbiota is observed with apigenin, and this is attributed to its solubility constraints via the chosen administration route, resulting in its accumulation in the mesentery.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Propiofenonas , Ratos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Apigenina/farmacologia , Apigenina/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Colo , Inflamação/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Colite/tratamento farmacológico
7.
ACS Appl Bio Mater ; 7(3): 1317-1335, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38357783

RESUMO

Wound management in obesity is complicated by excessive exudates from wounded areas, pressure ulcerations due to stacking of the fat layer, and vascular rarefaction. The current study explored the development of biomaterials for reprogramming the altered wound microenvironment under obese conditions. Self-assembled collagen biomatrix with trans and de novo browning activator, apigenin, was fabricated as a soft tissue regenerative wound dressing material. The as-synthesized self-assembled collagen biomatrix exhibited excellent thermal, mechanical, and biological stability with a superior wound exudate absorption capacity. The apigenin self-assembled collagen biomatrix exhibited porous 3-D microstructure that mimicked the extracellular matrix that promoted cell adhesion and proliferation. The apigenin self-assembled collagen multifunctional biomatrix triggered adaptive localized thermogenesis in the subcutaneous fat layer, resulting in the activation of angiogenesis and fibroblast spreading and migration. The in vivo wound healing assay performed in DIO-C57BL6 mice showed faster tissue regeneration within 9 days, with well-defined neo-epidermis, blood vessel formation, thick collagen deposition, minimal inflammation, and significant activation of browning in the subcutaneous adipose layer. This study paves the way forward for the development of specialized regenerative biomatrices that reprogram the obese wound bed for faster tissue regeneration.


Assuntos
Apigenina , Colágeno , Animais , Camundongos , Apigenina/farmacologia , Apigenina/uso terapêutico , Camundongos Endogâmicos C57BL , Colágeno/química , Cicatrização , Obesidade
8.
Biosens Bioelectron ; 251: 116123, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359670

RESUMO

Breast cancer lung metastases (BCLM) are a major cause of high mortality in patients. The shortage of therapeutic targets and rapid drug screening tools for BCLM is a major challenge at present. Mitochondrial autophagy, which involves the degradation of proteins associated with cancer cell aggressiveness, represents a possible therapeutic approach for the treatment of BCLM. Herein, four fluorescent biosensors with different alkyl chains were designed and synthesized to monitor mitochondrial autophagy. Among them, PMV-12 demonstrated the highest sensitivity to viscosity variance, the least impact on polarity, and the longest imaging time. The introduction of the C12-chain made PMV-12 anchored in the mitochondrial membrane without being disturbed by changes of the mitochondrial membrane potential (MMP), thereby achieving the long-term monitor in situ for mitochondrial autophagy. Mitochondria stained with PMV-12 induced swelling and viscosity increase after treating with apigenin, which indicated that apigenin is a potential mitochondrial autophagy inducer. Apigenin was subsequently verified to inhibit cancer cell invasion by 92%. Furthermore, PMV-12 could monitor the process of BCLM in vivo and evaluate the therapeutic effects of apigenin. This work provides a fluorescent tool for elucidating the role of mitochondrial autophagy in the BCLM process and for anti-metastatic drug development.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Apigenina/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Autofagia , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Corantes
9.
Mini Rev Med Chem ; 24(3): 341-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282447

RESUMO

PURPOSE: Diabetes is one of the important and growing diseases in the world. Among the most common diabetic complications are renal adverse effects. The use of apigenin may prevent the development and progression of diabetes-related injuries. The current study aims to review the effects of apigenin in the treatment of diabetic nephropathy. METHODS: In this review, a systematic search was performed based on PRISMA guidelines for obtaining all relevant studies on "the effects of apigenin against diabetic nephropathy" in various electronic databases up to September 2022. Ninety-one articles were obtained and screened in accordance with the predefined inclusion and exclusion criteria. Seven eligible articles were finally included in this review. RESULTS: The experimental findings revealed that hyperglycemia led to the decreased cell viability of kidney cells and body weight loss and an increased kidney weight of rats; however, apigenin administration had a reverse effect on these evaluated parameters. It was also found that hyperglycemia could induce alterations in the biochemical and renal function-related parameters as well as histopathological injuries in kidney cells or tissue; in contrast, the apigenin administration could ameliorate the hyperglycemia-induced renal adverse effects. CONCLUSION: The results indicated that the use of apigenin could mitigate diabetes-induced renal adverse effects, mainly through its antioxidant, anti-apoptotic, and anti-inflammatory activities. Since the findings of this study are based on experimental studies, suggesting the use of apigenin (as a nephroprotective agent) against diabetic nephropathy requires further clinical studies.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Apigenina/farmacologia , Apigenina/uso terapêutico , Apigenina/metabolismo , Estresse Oxidativo , Rim , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Diabetes Mellitus/patologia
10.
CNS Neurol Disord Drug Targets ; 23(4): 468-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038672

RESUMO

Neurodegenerative diseases (NDDs), such as Alzheimer's and Parkinson's, are the most frequent age-related illnesses affecting millions worldwide. No effective medication for NDDs is known to date and current disease management approaches include neuroprotection strategies with the hope of maintaining and improving the function of neurons. Such strategies will not provide a cure on their own but are likely to delay disease progression by reducing the production of neurotoxic chemicals such as reactive oxygen species (ROS) and related inflammatory chemicals. Natural compounds such as flavonoids that provide neuroprotection via numerous mechanisms have attracted much attention in recent years. This review discusses evidence from different research models and clinical trials on the therapeutic potential of one promising flavonoid, apigenin, and how it can be helpful for NDDs in the future prospects. We have also discussed its chemistry, mechanism of action, and possible benefits in various examples of NDDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Apigenina/farmacologia , Apigenina/uso terapêutico , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Flavonoides/farmacologia
11.
Bioorg Chem ; 143: 107059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154388

RESUMO

This study investigated the inhibitory potential of a series of synthesized compounds (L1-L27) on α-glucosidase. Among them, compound L22 showed significant inhibitory effect. Through enzymatic kinetics studies, we demonstrated that L22 acts via a non-competitive inhibition mode with a Ki value of 2.61 µM, highlighting its high affinity for the enzyme. Molecular docking studies revealed the formation of hydrogen bonds between L22 and α-glucosidase and diverse interactions with neighboring amino acid residues. Furthermore, molecular dynamics simulations confirmed the stability of the L22-α-glucosidase complex. In a mouse model of type 2 diabetes, treatment with L22 significantly lowered fasting blood glucose levels, and reduced insulin resistance, suggesting its potential as a therapeutic agent for type 2 diabetes. Furthermore, L22 showed a protective effect against oxidative stress in the liver and alleviated liver and pancreatic abnormalities. These results provide valuable insights into the mechanism of action of L22 and its potential applications to treat type 2 diabetes, and improve liver health.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Camundongos , Animais , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Apigenina/farmacologia , Apigenina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , alfa-Glucosidases/metabolismo , Cinética
12.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069249

RESUMO

Seizures are common in preterm newborns and are associated with poor neurodevelopmental outcomes. Current anticonvulsants have poor efficacy, and many have been associated with upregulation of apoptosis in the developing brain. Apigenin, a natural bioactive flavonoid, is a potent inhibitor of hyaluronidase and reduces seizures in adult animal models. However, its impact on perinatal seizures is unclear. In the present study, we examined the effect of apigenin and S3, a synthetic, selective hyaluronidase inhibitor, on seizures after cerebral ischemia in preterm fetal sheep at 0.7 gestation (98-99 days, term ~147 days). Fetuses received sham ischemia (n = 9) or ischemia induced by bilateral carotid occlusion for 25 min. Immediately after ischemia, fetuses received either a continuous infusion of vehicle (0.036% dimethyl sulfoxide, n = 8) or apigenin (50 µM, n = 6). In a pilot study, we also tested infusion of S3 (2 µM, n = 3). Fetuses were monitored continuously for 72 h after ischemia. Infusion of apigenin or S3 were both associated with reduced numbers of animals with seizures, total seizure time, and mean seizure burden. S3 was also associated with a reduction in the total number of seizures over the 72 h recovery period. In animals that developed seizures, apigenin was associated with earlier cessation of seizures. However, apigenin or S3 treatment did not alter recovery of electroencephalographic power or spectral edge frequency. These data support that targeting brain hyaluronidase activity with apigenin or S3 may be an effective strategy to reduce perinatal seizures following ischemia. Further studies are required to determine their effects on neurohistological outcomes.


Assuntos
Apigenina , Hipóxia-Isquemia Encefálica , Gravidez , Feminino , Ovinos , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Hialuronoglucosaminidase , Projetos Piloto , Convulsões/tratamento farmacológico , Feto/patologia , Isquemia , Eletroencefalografia , Hipóxia-Isquemia Encefálica/patologia
13.
Int J Biol Sci ; 19(16): 5233-5244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928261

RESUMO

Apigenin is the active ingredient in Ludangshen. Although previous studies reported the cardioprotective actions of apigenin against doxorubicin (Dox)-induced cardiomyopathy, the underlying mechanisms remain incompletely understood. Since apigenin beneficially regulates various aspects of mitochondrial function and dynamics, we asked whether apigenin improves heart function in mice with Dox-induced cardiomyopathy by regulating the mitochondrial unfolded protein response (UPRmt). Co-administration of apigenin significantly restored heart function, reduced myocardial swelling, inhibited cardiac inflammation, increased cardiac transcription of UPRmt-related genes, and promoted cardiomyocyte survival in Dox-treated mice. In turn, blockade of UPRmt abolished the mito- and cytoprotective effects of apigenin, evidenced by decreased ATP production, suppressed mitochondrial antioxidant capacity, and increased apoptosis, in Dox-treated, cultured HL-1 cardiomyocytes. Furthermore, apigenin treatment prevented Dox-induced downregulation of Sirt1 and Atf5 expression, and the beneficial effects of apigenin were completely nullified in Sirt1 knockout (KO) mice or after siRNA-mediated Sirt1 knockdown in vitro. We thus provide novel evidence for a promotive effect of apigenin on UPRmt via regulation of the Sirt1/Atf5 pathway. Our findings uncover that apigenin seems to be an effective therapeutic agent to alleviate Dox-mediated cardiotoxicity.


Assuntos
Apigenina , Cardiomiopatias , Camundongos , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Apigenina/metabolismo , Sirtuína 1/metabolismo , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Cardiomiopatias/metabolismo , Camundongos Knockout , Doxorrubicina/farmacologia , Apoptose , Estresse Oxidativo
14.
Front Biosci (Landmark Ed) ; 28(10): 237, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37919082

RESUMO

Several antiviral drugs are clinically approved to treat influenza that is a highly prevalent acute respiratory disease. However, emerging drug-resistant virus strains undermine treatment efficacy, highlighting the exigency for novel antiviral drugs to counter these drug-resistant strains. Plants and their derivates have been historically utilized as medicinal remedies, and extensive studies have evidenced the antiviral potential of phytochemicals. Notably, apigenin is a predominant flavonoid with minimal toxicity and substantial therapeutic effects in various disease models. Despite its many anti-inflammatory, anti-oxidant, anti-cancer, anti-bacterial, and other beneficial bioactivities, existing reviews have yet to focus on apigenin's antiviral effects. Therefore, this review elucidates apigenin's therapeutic and antiviral properties in vitro and in vivo, discussing its mode of action and future prospects. Apigenin's remarkable inhibition by modulating multiple mechanisms against viruses has promising potential for novel plant-derived antiviral drugs and further clinical study developments.


Assuntos
Neoplasias , Viroses , Humanos , Apigenina/farmacologia , Apigenina/uso terapêutico , Apigenina/química , Viroses/tratamento farmacológico , Neoplasias/tratamento farmacológico , Flavonoides , Antivirais/farmacologia , Antivirais/uso terapêutico
15.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003220

RESUMO

Inflammatory bowel disease (IBD) is an autoimmune disease that leads to severe bowel symptoms and complications. Currently, there is no effective treatment, and the exact cause of IBD remains unclear. In the last decades, numerous studies have confirmed that flavonoids can have a positive impact on the treatment of IBD. Therefore, this study investigated the protective effect of a flavonoid combination of apigenin and epigallocatechin-3-gallate (EGCG) on IBD. In vitro studies in which Caco-2 cell monolayers were incubated with different concentrations of flavonoids found that the flavonoid-treated group exhibited increased transepithelial electrical resistance (TEER) at high concentrations, indicating a protective effect on the barrier function of the intestinal epithelium. In vivo studies showed that flavonoids significantly attenuated inflammatory levels in both chronic and acute hapten-mediated experimental colitis models in a time- and dose-dependent manner. In addition, the activity of myeloperoxidase (MPO) and the level of proinflammatory cytokines in the colon tissue were significantly reduced. Interestingly, the levels of anti-inflammatory cytokines were also dramatically increased. Finally, flavonoids were found to positively modulate the composition of the gut microbiota in the colon. Therefore, a combination of flavonoids could be a promising therapeutic agent for the future adjunctive treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Apigenina/farmacologia , Apigenina/uso terapêutico , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Citocinas , Inflamação/tratamento farmacológico , Sulfato de Dextrana , Modelos Animais de Doenças
16.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37777833

RESUMO

Leishmania mexicana is one of the causal agents of cutaneous leishmaniasis. Current antileishmanial chemotherapeutics have demonstrated adverse side effects; thus, alternative treatments are needed. In this study, we performed in silico and in vitro analyses of the leishmanicidal potential of the most abundant phenolic compounds identified in black sesame sprouts biostimulated with Bacillus clausii. The molecular docking analysis showed strong interactions (binding free energies between -6.5 and -9.5 kcal/mol) of sesaminol 2-O-triglucoside, pinoresinol dihexoside, isoverbascoside, and apigenin with the arginase, leishmanolysin, cysteine peptidase B, and pyruvate kinase leishmanial enzymes. Furthermore, almost all phenolic compounds interacted with the active site residues of L. mexicana enzymes. In vitro, the B. clausii-biostimulated sprout phenolic extracts and apigenin inhibited the growth of promastigotes with IC50 values of 0.08 mg gallic acid equivalent/mL and 6.42 µM (0.0017 mg/mL), respectively. Additionally, in the macrophage infection model, cells treated with B. clausii-biostimulated sprout phenolic extracts and infected with L. mexicana exhibited significantly (P < 0.05) reduced nitric oxide production and decreased parasite burden. Altogether, our study provides important data related to high efficacy and less toxic natural antileishmanial candidates against promastigotes of L. mexicana.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmaniose Cutânea , Sesamum , Animais , Camundongos , Simulação de Acoplamento Molecular , Apigenina/farmacologia , Apigenina/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Antiprotozoários/farmacologia , Camundongos Endogâmicos BALB C
17.
Biomed Pharmacother ; 167: 115562, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801900

RESUMO

Visceral hypersensitivity (VH) and gut microbiota dysbiosis significantly contribute to the occurrence and development of irritable bowel syndrome (IBS), exacerbated by stress. Apigenin, a natural flavonoid derived from plants, possesses a range of beneficial properties. However, additional research is necessary to investigate its potential in alleviating symptoms of IBS and elucidating its underlying mechanisms of action. Our study confirms that apigenin effectively reverses mast cell and microglial activation, regulates the composition and abundance of the gut microbiota, improves intestinal barrier function in rats induced with water-avoidance stress, and mitigates VH and colonic hypermotility. Furthermore, in vitro studies suggest a potential role of dysbiotic gut microbiota in activating mast cells at the cellular level. Notably, apigenin inhibits mast cell degranulation through the toll-like receptor 4 (TLR4) / myeloid differentiation primary response gene 88 (MyD88) / nuclear factor-kappa B (NF-κB) pathway. In conclusion, this study discusses the potential therapeutic effects of apigenin in alleviating VH and modulating the gut-brain axis in water-avoidance stress rats, providing a novel or alternative treatment approach for IBS.


Assuntos
Síndrome do Intestino Irritável , Ratos , Animais , Eixo Encéfalo-Intestino , Mastócitos/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Água/metabolismo
18.
Int Immunopharmacol ; 124(Pt B): 110943, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804654

RESUMO

Activation of Toll-like receptor (TLR) 4 plays important roles in the influenzaA virus (IAV) infection. To explore TLR4 inhibitors, 161 traditional Chinese medicines (TCMs) were screened. Further, we screened out Ixeris sonchifolia Hance, and its active compound, Apigetrin (apigenin-7-O-glucoside). Antiviral activity of Apigetrin was determined by plaque assay. We also further investigated the influence of Apigetrin on immune signaling pathways including TLRs, MAPK, NF-κB and autophagy pathways. The in-vitro results showed that the extract and its several ingredients could significantly inhibit IAV replication. Apigetrin significantly improved IAV-induced oxidative stress, inhibited the IAV-induced cytokine storm by suppressing the excessive activation of TLR3/4/7, JNK/p38 MAPK and NF-κB. Apigetrin decreased autophagosome accumulation and promoted degradation of IAV protein. Interestingly, Apigetrin antiviral activity was reversed by using H2O2 and the agonists of TLR4, JNK/p38, NF-κB and autophagy. Most important, the in-vitro effective concentration is higher than the reported plasma concentration. The in-vivo test showed that Apigetrin significantly increased the average survival time, reduced the lung edema and IAV replication. In conclusion, we have found that Ixeris sonchifolia Hance and its several ingredients can inhibit IAV infection, and the mechanisms of action of Apigetrin against IAV is by regulating TLR4 and autophagy signaling pathways.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Vírus da Influenza A/fisiologia , NF-kappa B/metabolismo , Apigenina/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Avaliação Pré-Clínica de Medicamentos , Peróxido de Hidrogênio/farmacologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Autofagia
19.
J Nutr Biochem ; 121: 109430, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597817

RESUMO

Apigenin, a flavonoid that widely existed in vegetables and fruits, possesses anticarcinogenic, low toxicity, and no mutagenic properties, suggesting that apigenin is a potential therapeutic agent for tumors. However, the underlying anti-cancer molecular target of apigenin is still unclear. Therefore, to reveal the direct target and amino acid site of apigenin against colorectal cancer is the focus of this study. In the present study, the results proved that the anti-CRC activity of apigenin was positively correlated with pyruvate kinase M2 (PKM2) expression, characterized by the inhibition of cell proliferation and increase of apoptotic effects induced by apigenin in LS-174T cells of knock down PKM2. Next, pull-down and MALDI-TOF/TOF analysis determined that apigenin might interact directly with PKM2 in HCT-8 cells. Further, the study confirmed that lysine residue 433 (K433) was a key amino acid site for PKM2 binding to apigenin. Apigenin restricted the glycolysis of LS-174T and HCT-8 cells by targeting the K433 site of PKM2, thereby playing an anti-CRC role in vivo and in vitro. Meanwhile, apigenin markedly attenuated tumor growth without any adverse effects. Taken together, these findings reveal that apigenin is worthy of consideration as a promising PKM2 inhibitor for the prevention of CRC.


Assuntos
Neoplasias Colorretais , Humanos , Aminoácidos/metabolismo , Apigenina/farmacologia , Apigenina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Glicólise , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
20.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446609

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading cancer killers. Apigenin (Api) and Naringenin (Nar) are natural bioactive substances obtained in various vegetables and fruits, possessing anti-tumor effects across multiple studies. This study investigated the latent synergistic antiproliferative functions of Api and Nar in A549 and H1299 NSCLC cells. Cell viability was determined after incubating with different concentrations of Api, Nar, or the combination of Api and Nar (CoAN) for 24 h. Analysis using the CompuSyn software revealed that the CI value of each combined dose was < 1, depicting that the two drugs had a synergistic inhibitory effect. The CoAN (A:N = 3:2) group with the lowest CI value was selected for subsequent experiments. The IC50 of CoAN (A:N = 3:2) was used to determine the cell cycle, the expression ratio of Bax to Bcl2, Caspase 3 activity, and mitochondrial function to assess oxidative stress and apoptosis. The results established that CoAN treatment caused significant cytotoxicity with cell cycle arrest at G2/M phases. Furthermore, CoAN significantly enhanced mitochondria dysfunction, elevated oxidative stress, and activated the apoptotic pathway versus Api or Nar alone groups. Thus, the CoAN chemotherapy approach is promising and deserves further research.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apigenina/uso terapêutico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sinergismo Farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...